Teaching: The Load-Bearing Walls

Mathematics K–5 | Pathway 2 | Day 4
Welcome Back!
TEACHING: THE LOAD-BEARING WALLS (GRADES K–5)

This Week

<table>
<thead>
<tr>
<th>Day</th>
<th>Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>ALIGN</td>
</tr>
<tr>
<td>10:00–4:30</td>
<td>Should my unit of study be aligned to the standards and shifts?</td>
</tr>
<tr>
<td>Tuesday</td>
<td>ADAPT</td>
</tr>
<tr>
<td>10:00–4:30</td>
<td>Why adapt my unit for students who have unfinished learning?</td>
</tr>
<tr>
<td>Wednesday</td>
<td>TASKS & DISCOURSE</td>
</tr>
<tr>
<td>8:30–4:30</td>
<td>Why prepare for student engagement?</td>
</tr>
<tr>
<td>Thursday</td>
<td>TEACH</td>
</tr>
<tr>
<td>10:00–4:30</td>
<td>What does standards-aligned instruction look like?</td>
</tr>
<tr>
<td>Friday</td>
<td>MOVING FORWARD</td>
</tr>
<tr>
<td>10:00–2:30</td>
<td>Why prepare to implement change?</td>
</tr>
</tbody>
</table>

Four days of “Practicum”
Thank You for Your Feedback!
Norms That Support Our Learning

- Take responsibility for yourself as a learner.
- Honor time frames (start, end, and activity).
- Be an active and hands-on learner.
- Use technology to enhance learning.
- Strive for equity of voice.
- Contribute to a learning environment in which it is “safe to not know.”
- Identify and reframe deficit thinking and speaking.
Objectives

Identify and prioritize key questions, activities, and interactions (“load-bearing walls”) within lessons.

Plan lesson structures that relate new and prior learning through links to prerequisite knowledge and skills.

Take low-inference notes while observing instruction and provide feedback based on these notes.

Model teaching a lesson’s load-bearing walls and receive feedback.

Identify concrete individual commitments and team structures for continuing curricular work.

Agenda

I. Reflection & Motivation
II. Load-Bearing Walls
III. Practice
IV. Connecting to Prerequisites

Lunch Break

V. Preparing a Lesson for Teaching
VI. Table Teaching
VII. Taking This Work Back
I. Reflection & Motivation

IN YOUR JOURNALS

What connections to the intersection of standards-aligned instruction, equity, power, and linguistic access did you make to this morning’s keynote?

What impact do these have on your practice?
Imagine that you are teaching a lesson tomorrow morning.

What steps do you complete to prepare between now and then, and why?

(Assume that the lesson is already written.)
Reflection & Motivation

<table>
<thead>
<tr>
<th>What we do</th>
<th>Why?</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Logistical stuff.” Gather materials, print things out.</td>
<td>• Pretty non-negotiable! 😊</td>
</tr>
<tr>
<td>Do ALL the math. Do the problems, exercises, and activities. Especially the Exit Ticket!</td>
<td>• Understand the target of the lesson.</td>
</tr>
<tr>
<td></td>
<td>• Preempt student misconceptions.</td>
</tr>
<tr>
<td></td>
<td>• Understand levels of difficulty in problems for differentiation purposes.</td>
</tr>
<tr>
<td>Reference the standards addressed. How does the lesson build to what’s described?</td>
<td>• Understand the “load-bearing walls.”</td>
</tr>
<tr>
<td></td>
<td>• How the lesson attends to aspects of rigor?</td>
</tr>
<tr>
<td></td>
<td>• What is important?</td>
</tr>
<tr>
<td></td>
<td>• What isn’t that important?</td>
</tr>
<tr>
<td>Consider the students in front of you. Adapt and add connections as needed.</td>
<td>• Meet students where they are.</td>
</tr>
<tr>
<td></td>
<td>• Introduce MLRs to increase language access.</td>
</tr>
<tr>
<td></td>
<td>• Include opportunities for student discourse.</td>
</tr>
</tbody>
</table>
II. Intro: “Load-Bearing Walls”

1.NBT.C.4

Add within 100, including adding a two-digit number and a one-digit number, and adding a two-digit number and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten.
How Does the Lesson Meet the Standard?

EngageNY
Grade 1, Module 6, Lesson 18, Concept Development

T: (Write 58 + 37 on the board.) Solve this problem. (Pause while students work. Quietly post a second problem for early finishers.)

T: The answer is?

S: 95!

T: Take a moment to discuss your strategy or correct your work with your partner.

T: (Project work from Student A and Student B.) Let’s compare Student A’s work to Student B’s work. What is the same and what is different about their solution strategies? Turn and talk to your partner.

S: They both used number bonds. Both students broke apart 37. They both used tens to solve.

T: I have two labels. Read them to me.

S: Make a Ten First. Count On by Tens First.

T: Talk to your partner. Which label best describes the solution strategy of each student? Explain why.

S: Student A made the next ten first. Student A broke 37 into 2 and 35 so he could add 2 and 58 to make 60. Student B counted on by tens. That’s why he broke apart 37 into 30 and 7. 58 and 30 is 88. Student B added the tens first. I don’t think he counted on by tens, but I guess that label fits the best.

T: (Label Student A’s work Make a New Ten First. Label Student B’s work Count On by Tens First)

T: Can both students’ work be correct even though they used tens in different ways?

S: Yes!

T: What is a compliment you can give to each of these students?

S: They drew correct number bonds. Student A showed how she made a new ten first from 58. You can see that in the number bond and in the first addition sentence. Student B did a good job by breaking apart the tens from 37 so he could add 3 tens to 58 first.

T: What are some ways they could improve their work?

S: Student B could write an addition sentence that showed how he got 88. But maybe he did that in his head.

T: (Project Student C’s work.) How did Student C solve 58 + 37? Turn and talk to your partner.

S: He drew quick tens and ones by lining up the tens to tens and the ones to ones. Then he showed exactly how he added using just the numbers.

T: (Label the work The Quick Ten Drawing – Adding Tens to Tens and Ones to Ones.)

T: This student’s answer is 85, instead of 95 like we got. What happened? Can we find the error in his work?

S: When he added the ones together, he made a new ten with 8 and 2 from the 7. But when he added the tens, he forgot about the new ten! You can see that when he used just the numbers. He didn’t remember the new ten. It’s easier to remember a new ten when you write it in the tens place. There should be a total of 9 tens, not 8 tens. The answer is 9 tens 5 ones. 95.
TEACHING: THE LOAD-BEARING WALLS (GRADES K–5)

What Can Happen in Class?

T: (Write 58 + 37 on the board.) Solve this problem. (Pause while students work. Quietly post a second problem for early finishers.)

T: The answer is?

S: 95!

T: Take a moment to discuss your strategy or correct your work with your partner.

T: (Project work from Student A and Student B.) Let’s compare Student A’s work to Student B’s work. What is the same and what is different about their solution strategies? Turn and talk to your partner.

S: They both used number bonds. Both students broke apart 37. They both used tens to solve.

T: I have two labels. Read them to me.

S: Make a Ten First. Count On by Tens First.

T: Talk to your partner. Which label best describes the solution strategy of each student? Explain why.

S: Student A made the next ten first. Student A broke 37 into 2 and 35 so he could add 2 and 58 to make 60. Student B counted on by tens. That’s why he broke apart 37 into 30 and 7. 58 and 30 is 88. Student B added the tens first. I don’t think he counted on by tens, but I guess that label fits the best.

T: (Label Student A’s work Make a New Ten First. Label Student B’s work Count On by Tens First)

T: Can both students’ work be correct even though they used tens in different ways?

S: Yes!

T: What is a compliment you can give to each of these students?

S: They drew correct number bonds. Student A showed how she made a new ten first from 58. You can see that in the number bond and in the first addition sentence. Student B did a good job by breaking apart the tens from 37 so he could add 3 tens to 58 first.

T: What are some ways they could improve their work?

S: Student B could write an addition sentence that showed how he got 88. But maybe he did that in his head.

T: (Project Student C’s work.) How did Student C solve 58 + 37? Turn and talk to your partner.

S: He drew quick tens and ones by lining up the tens to tens and the ones to ones. Then he showed exactly how he added using just the numbers.

T: (Label the work The Quick Ten Drawing—Adding Tens to Tens and Ones to Ones.)

T: This student’s answer is 85, instead of 95 like we got. What happened? Can we find the error in his work?

S: When he added the ones together, he made a new ten with 8 and 2 from the 7. But when he added the tens, he forgot about the new ten. You can see that when he used just the numbers. He didn’t remember the new ten. It’s easier to remember a new ten when you write it in the tens place. There should be a total of 9 tens, not 8 tens. The answer is 9 tens 5 ones—95.
TEACHING: THE LOAD-BEARING WALLS (GRADES K–5)

Seeing the “Load-Bearing Walls”

T: (Write 58 + 37 on the board.) Solve this problem. (Pause while students work. Quietly post a second problem for early finishers.)
T: The answer is?
S: 95!
T: Take a moment to discuss your strategy or correct your work with your partner.
T: (Project work from Student A and Student B.) Let’s compare Student A’s work to Student B’s work. What is the same and what is different about their solution strategies? Turn and talk to your partner.
S: They both used number bonds. → Both students broke apart 37. → They both used tens to solve.
T: I have two labels. Read them to me.
S: Make a Ten First. Count On by Tens First.
T: Talk to your partner. Which label best describes the solution strategy of each student? Explain why.
S: Student A made the next ten first. → Student A broke 37 into 2 and 35 so he could add 2 and 58 to make 60. → Student B counted on by tens. That’s why he broke apart 37 into 30 and 7. 58 and 30 is 88. → Student B added the tens first. I don’t think he counted on by tens, but I guess that label fits the best.
T: (Label Student A’s work Make a New Ten First. Label Student B’s work Count On by Tens First)
T: Can both students’ work be correct even though they used tens in different ways?
S: Yes!
T: What is a compliment you can give to each of these students?
S: They drew correct number bonds. → Student A showed how she made a new ten first from 58. You can see that in the number bond and in the first addition sentence. → Student B did a good job by breaking apart the tens from 37 so he could add 3 tens to 58 first.
T: What are some ways they could improve their work?
S: Student B could write an addition sentence that showed how he got 88. But maybe he did that in his head.
T: (Project Student C’s work.) How did Student C solve 58 + 37? Turn and talk to your partner.
S: He drew quick tens and ones by lining up the tens to tens and the ones to ones. → Then he showed exactly how he added using just the numbers.
T: (Label the work The Quick Ten Drawing – Adding Tens to Tens and Ones to Ones.)
T: This student’s answer is 85, instead of 95 like we got. What happened? Can we find the error in his work?
S: When he added the ones together, he made a new ten with 8 and 2 from the 7. But when he added the tens, he forgot about the new ten! → You can see that when he used just the numbers. He didn’t remember the new ten. It’s easier to remember a new ten when you write it in the tens place. → There should be a total of 9 tens, not 8 tens. The answer is 9 tens 5 ones. 95.
1.NBT.C.4

Add within 100, including adding a two-digit number and a one-digit number, and adding a two-digit number and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten.
III. Practice: “Load-Bearing Walls”

<table>
<thead>
<tr>
<th>Kindergarten</th>
<th>Grade 1</th>
<th>Grade 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>K.OA.A.3</td>
<td>1.OA.C.6</td>
<td>2.OA.B.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade 3</th>
<th>Grade 4</th>
<th>Grade 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.OA.A.1</td>
<td>4.OA.A.1</td>
<td>5.NBT.A.1</td>
</tr>
</tbody>
</table>
Where did you see the “load-bearing walls” in these lessons?
Identifying Prerequisites

Connecting to load-bearing walls
IV. Intro: Connecting to Prerequisites

1.NBT.C.4
Add within 100, including adding a two-digit number and a one-digit number, and adding a two-digit number and a multiple of 10 using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten.
Prerequisites for 1.NBT.C.4

- **1.NBT.B.2**: Understand that the two digits of a two-digit number represent amounts of tens and ones…
- **K.NBT.A.1**: Compose and decompose numbers from 11 to 19 into ten ones and some further ones…
- **1.OA.C.6**: Add and subtract within 20, demonstrating fluency for addition and subtraction within 10. Use strategies such as counting on; making ten…
- **K.OA.A.4**: For any number from 1 to 9, find the number that makes 10 when added to the given number, e.g., by using objects or drawings, and record the answer with a drawing or equation.
TEACHING: THE LOAD-BEARING WALLS (GRADES K–5)

What Could We Ask Students to Do First?

T: (Write 58 + 37 on the board.) Solve this problem. (Pause while students work. Quietly post a second problem for early finishers.)
T: The answer is?
S: 95!
T: Take part
T: (Propose the question: the teacher asks)
S: Yes!
T: Wha
S: They both
T: I ha
S: Mak
T: Talk
S: Stud brok
T: (Label the work The Quick Ten Drawing – Adding Tens to Tens and Ones to Ones.)
T: This student’s answer is 85, instead of 95 like we got. What happened? Can we find the error in his work?
S: When he added the ones together, he made a new ten with 8 and 2 from the 7. But when he added the tens, he forgot about the new ten! You can see that when he used just the numbers. He didn’t remember the new ten. It's easier to remember a new ten when you write it in the tens place. There should be a total of 9 tens, not 8 tens. The answer is 9 tens 5 ones. 95.
SESSION 1 (111M): Rigor– Calibrating Common Core (6 – 8)

BREAK

Lunch
Welcome Back!

Key is under this mat.
V. Practice: Connecting to Prerequisites

1. **Identify the prerequisite standards.** Where does your lesson extend from?

2. **Highlight/build in explicit connections to prior learning.**
 - **Example:** Write a short set of warm-up problems and two or three follow-up questions that help students draw connections to what they’ve already learned.
 - **Example:** Identify an important opening activity (if already included in the lesson) and write two or three follow-up questions.
Practice: Connecting to Prerequisites

<table>
<thead>
<tr>
<th></th>
<th>Kindergarten</th>
<th>Grade 1</th>
<th>Grade 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kindergarten</td>
<td>K.OA.A.3</td>
<td>1.OA.C.6</td>
<td>2.OA.B.2</td>
</tr>
<tr>
<td></td>
<td>Module 4,</td>
<td>Module 2,</td>
<td>Module 1,</td>
</tr>
<tr>
<td></td>
<td>Lesson 1</td>
<td>Lesson 23</td>
<td>Lesson 4</td>
</tr>
<tr>
<td>Grade 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.OA.A.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module 1, Lesson 1</td>
<td></td>
<td>Module 3,</td>
<td>Module 1,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lesson 1</td>
<td>Lesson 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.OA.A.1</td>
<td>5.NBT.A.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.OA.A.2</td>
<td>5.NBT.A.2</td>
</tr>
<tr>
<td>Grade 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module 1, Lesson 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Where did you see opportunities for connecting to prerequisites in these lessons?
I. Reflection

- Administration and Leadership
 - What building conditions must exist to support planning that attends to the load-bearing walls of the lesson?
 - How can you direct resources to ensure that teachers have capacity to attend to the load-bearing walls of every lesson?

- Coaches – What coaching moves must you implement to emphasize planning practices focused on the load-bearing walls of lessons?

- Teachers
 - How will you incorporate attention to load-bearing walls into your planning routine?
 - What building conditions must exist to support your planning routine to use load-bearing walls?

- Partner Organization – How does your organization’s activities with districts and partners support planning that focuses on the load-bearing walls of lessons?
I. Reflection: Journal Entry

Prompts:

What have you learned that you can take back to your classroom/school to ensure that all students have access to high-quality instruction?

How does teaching the load-bearing walls of each lesson relate to the Five Charges, Power, MLRs, Tasks & Discourse?
Preparing a Lesson for Teaching

Strategies for aligning instruction
Aligned Instruction: Where Are We?

IPG Indicators:

1A: “...focuses on the grade-level cluster(s), grade-level content standard(s), or part(s) thereof. “

1B: “... appropriately relates new content to math content within or across grades.”

1C: “... intentionally targets the aspect(s) of Rigor...”

2A: “... makes the mathematics of the lesson explicit through the use of explanations, representations, tasks, and/or examples.”

CORE ACTIONS AND INDICATORS

Core Action 1
Ensure the work of the taught lesson reflects the Focus, Coherence, and Rigor required by college- and career-ready standards in mathematics.

A. The taught lesson focuses on the grade-level cluster(s), grade-level content standard(s), or part(s) thereof.

 Mathematical learning goal:

 Standards addressed in the lesson:

 B. The taught lesson appropriately relates new content to math content within or across grades.

 C. The taught lesson intentionally targets the aspect(s) of Rigor (Conceptual understanding, procedural skill and fluency, application) called for by the standards being addressed.

 Core the aspect(s) of Rigor targeted in the standard addressed in this lesson: Conceptual understanding / Procedural skill and fluency / Application.

Core Action 2
Align instruction and practice that allow all students to learn the content of the lesson.

A. The teacher makes the mathematics of the lesson explicit through the use of representations, tasks, and/or examples.

 B. The teacher strengthens students' understanding of the content by strategically sharing student representations and/or solution methods.

 C. The teacher strategically checks for understanding throughout the lesson to surface misconceptions and opportunities for growth, and adapts the lesson according to student understanding.

 D. The teacher fosters the summary of the mathematics with references to student work and discussion in order to reinforce the purpose of the lesson.

Core Action 3
Provide all students with opportunities to exhibit mathematical practices while engaging with the content of the lesson.

A. The teacher provides opportunities for all students to work with and practice grade-level problems and exercises.

 Students work with and practice grade-level problems and exercises.

 B. The teacher considers reasoning and problem solving by asking students to analyze the logic,

 Students articulate and analyze the logic and reasoning of their work.

 C. The teacher probes questions and problems that prompt students to explain their thinking about the content of the lesson.

 Students share their thinking about the content of the lesson.

 D. The teacher creates the conditions for student conversations where students are encouraged to talk about each other's thinking.

 Students ask and answer questions about each other's thinking.

 E. The teacher connects and relates student, informal language and mathematical ideas to precise mathematical language and ideas.

 Students use increasingly precise mathematical language and ideas.

 F. Any uncorrected mathematical errors made during the context of the lesson (instructor, materials, or classroom display) noted here.

STUDENT ACCOUNTABILITY PARTNERS

Revised 03/15
We will focus on some of the Core Actions to help us observe instruction around the load-bearing walls and organize our feedback.

The Core Actions are:

• 1A
• 1B
• 1C
• 2A

It addresses Standard 5.NF.3.
Video Observation

Table Discussion

• Did the instruction you observed align with the standard?

• What aspect of rigor seemed to be emphasized?

• How were students building conceptual understanding?

• Were students engaged in mathematical discourse?

• How did the teacher build access to the language of the lesson?
What Is Effective Feedback?

- Tangible & transparent – uses data that is accessible and easy to understand
- Actionable – concrete, specific, accurate, and useful data
- Accepted by the teacher
- Specific & personalized
- Timely

When Giving Feedback

- Base it on effective evidence
- Reinforce with effective practices
- Be specific
- Be descriptive
- Note the impact of teacher actions on students
- Attend to teacher’s stated need/area of focus
V. Preparing a Lesson for Teaching

1. Select a 3–4 minute section from your own lesson.
2. Prepare the lesson plan: examine the standards, highlight, and/or add load-bearing walls or connections, as needed.
3. Prepare your “board” and any manipulatives you’ll need.
VI. Table Teaching Protocol

Introduction: Two sentences

- Standard and objective/aim
- Brief lesson context

Go “all in” for your role:

- Use your “teacher voice”
- Stay in character the entire time
- Specify equity move

Next person in line is “coach,” who keeps time (4 minutes + 1 extra if needed) and gives feedback:

- 1 content-related “glow”
- 1 content-related “grow” for next time
VII. Reflection: Journal Entry

Prompts:

1. Why focus on Load-Bearing Walls?
2. How does the focus on Load-Bearing Walls promote equitable access to the math curriculum?
We Take Data Seriously

Please fill out the survey located here: standardsinstitutes.org/institute/summer-2019

1. Click on the grey ‘Daily Survey’ link
2. Choose the appropriate link for today’s survey, i.e. Day 1, and continue to new window
About This Deck

• Copyright © 2018 UnboundEd Learning, Inc.

• This work is licensed under a Creative Commons Attribution NonCommercial ShareAlike 4.0 International License.

• UnboundEd Learning, Inc. is the copyright holder of the images and content, except where otherwise indicated in the slide notes.

• More information on Creative Commons’ licenses can be found here: https://creativecommons.org/licenses/.
How You Can Use This Deck

The materials that we create, unless otherwise cited in the slide notes, are licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license (CC BY-NC-SA 4.0). This means you may:

• **Share**—copy and redistribute the material in any medium or format

• **Adapt**—remix, transform, and build upon the material

As long as you follow the license terms:

• **Provide Attribution**—You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests that UnboundEd or any third party creator endorses you or your use.

• **No Commercial Use**—You may not use the material for commercial purposes

• **ShareAlike**—If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

• **Add no additional restrictions**—You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Reference List

<table>
<thead>
<tr>
<th>Slide</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>13–15, 22–23</td>
<td>EngageNY Grade 7, Module 3, Lesson 8 (teacher version) from EngageNY.org of the New York State Education Department is licensed under CC BY-NC-SA 3.0.</td>
</tr>
<tr>
<td>28</td>
<td>https://achievethecore.org/content/upload/IPG_Coaching_Math_k-8.pdf</td>
</tr>
<tr>
<td>34</td>
<td>https://www.unbounded.org/math/grade-6/module-1/topic-a/lesson-3</td>
</tr>
</tbody>
</table>
TEACHING: THE LOAD-BEARING WALLS (GRADES 6–12)

Image References

<table>
<thead>
<tr>
<th>Slide</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>“Welcome Mat” by Dru Bloomfield (Flickr)</td>
</tr>
<tr>
<td>6</td>
<td>“Textures: 100-year-old bricks in Scarborough bldg office. Not load-bearing, I trust!” by rg-fotos (Flickr)</td>
</tr>
<tr>
<td>9</td>
<td>“Share” by C!... (Flickr)</td>
</tr>
<tr>
<td>10</td>
<td>“Morning Clouds” by Ivan</td>
</tr>
<tr>
<td>17</td>
<td>“Latte Art Smile” by Brain J (Flickr)</td>
</tr>
<tr>
<td>25</td>
<td>“connection” by wolfgangfoto (Flickr)</td>
</tr>
<tr>
<td>26</td>
<td>“Coffee Break” by Sam Carpenter (Flickr)</td>
</tr>
<tr>
<td>2</td>
<td>“Welcome” by alborzshawn (Flickr)</td>
</tr>
<tr>
<td>4</td>
<td>“Sharing” by Ben Grey (Flickr)</td>
</tr>
<tr>
<td>5</td>
<td>“Prepare” by Photo Monkey (Flickr)</td>
</tr>
<tr>
<td>7</td>
<td>“Snack Break” by IPlayHockey (Flickr)</td>
</tr>
<tr>
<td>8</td>
<td>“Obstacle Course” by David K (Flickr)</td>
</tr>
<tr>
<td>9</td>
<td>“Structure” by Saurabh Tewari (Flickr)</td>
</tr>
</tbody>
</table>